Function of the hyperpolarization-activated inward rectification in nonmyelinated peripheral rat and human axons.
نویسندگان
چکیده
The function of time-dependent, hyperpolarization-activated inward rectification was analyzed on compound potentials of nonmyelinated axons in the mammalian peripheral nervous system. Isolated rat vagus nerves and fascicles of biopsied human sural nerve were tested in a three-chambered, Vaseline-gap organ bath at 37 degrees C. Inward rectification was assessed by recording the effects of long-lasting hyperpolarizing currents on electrical excitability with the use of the method of threshold electrotonus (program QTRAC, copyright Institute of Neurology, London, UK) and by measuring activity-dependent changes in conduction velocity and membrane potential. Prominent time-dependent, cesium-sensitive inward rectification was revealed in rat vagus and human sural nerve by recording threshold electrotonus to 200-ms hyperpolarizing current pulses. A slowing of compound action potential conduction was observed during a gradual increase in the stimulation frequency from 0.1 to 3 Hz. Above a stimulation frequency of 0.3 Hz, this slowing of conduction was enhanced during bath application of 1 mM cesium. Cesium did not alter action potential waveforms during stimulation at frequencies < 1 Hz. Cesium-induced slowing in action potential conduction was correlated with membrane hyperpolarization. The hyperpolarization by cesium was stronger during higher stimulation frequencies and small in unstimulated nerves. These data show that a cesium-sensitive, time-dependent inward rectification in peripheral rat and human nonmyelinated nerve fibers limits the slowing in conduction seen in such axons at action potential frequencies higher than approximately 0.3 Hz.
منابع مشابه
Ih without Kir in adult rat retinal ganglion cells.
Antisera directed against hyperpolarization-activated mixed-cation ("I(h)") and K(+) ("K(ir)") channels bind to some somata in the ganglion cell layer of rat and rabbit retina. Additionally, the termination of hyperpolarizing current injections can trigger spikes in some cat retinal ganglion cells, suggesting a rebound depolarization arising from activation of I(h). However, patch-clamp studies...
متن کاملElectrophysiological and morphological properties of neurons in the rat superior colliculus. I. Neurons in the intermediate layer.
To begin characterizing the neural elements underlying the dynamic properties of local circuits in the mammalian superior colliculus (SC), electrophysiological and morphological properties of individual neurons in the intermediate layer [stratum griseum intermediale (SGI)] were investigated using whole cell patch-clamp recording and intracellular staining with biocytin in slice preparations fro...
متن کاملFunction and distribution of three types of rectifying channel in rat spinal root myelinated axons.
1. The nature, distribution and function of rectifying channels in rat spinal root myelinated axons has been assessed with selective blocking agents and a variety of intracellular and extracellular recording techniques. 2. The electrotonic responses of roots poisoned with tetrodotoxin (TTX) to constant current pulses had fast (rise time much less than 1 ms) and slow components, which were inter...
متن کاملComplex intrinsic membrane properties and dopamine shape spiking activity in a motor axon.
We studied the peripheral motor axons of the two pyloric dilator (PD) neurons of the stomatogastric ganglion in the lobster, Homarus americanus. Intracellular recordings from the motor nerve showed both fast and slow voltage- and activity-dependent dynamics. During rhythmic bursts, the PD axons displayed changes in spike amplitude and duration. Pharmacological experiments and the voltage depend...
متن کاملPii: S0306-4522(98)00759-3
A hyperpolarization-activated cation conductance contributes to the membrane properties of a variety of cell types. In the thalamus, a prominent hyperpolarization-activated cation conductance exists in thalamocortical cells, and this current is implicated in the neuromodulation of complex firing behaviors. In contrast, the GABAergic cells in the reticular nucleus in the thalamus appear to lack ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 77 1 شماره
صفحات -
تاریخ انتشار 1997